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Abstract

In the current work, the accuracy of the equilibrium Eulerian approach in evolving the particulate

concentration field is evaluated by comparing it against the Lagrangian approach, for varying particle

response time and terminal velocity. In particular, we compare the statistics of preferential accumulation
and gravitational settling of particles in a cubic box of isotropic turbulence. Twelve simulations corre-

sponding to four values of nondimensional particle response time, sp ¼ 0:05, 0.1, 0.2, 0.4, and three values

of nondimensional terminal velocity, jVsj ¼ 0:5; 2; 4 are considered. The equilibrium Eulerian approach

obviates the need to solve additional governing equations for the particle velocity field. It, however, in-

volves evolution of the particle concentration field using the equilibrium Eulerian velocity field. A spectral

diffusion term is included in the particle concentration equation to provide an essentially non-oscillatory

behavior to the solution. There is good agreement between the equilibrium Eulerian and Lagrangian sta-

tistics for small particles. With increasing particle size, the equilibrium Eulerian approach tends to some-
what overestimate particle preferential concentration in regions of excess strain-rate over rotation-rate

compared to the Lagrangian approach. Over the entire range of parameters considered, the equilibrium

approach provides a good approximation to the actual mean and rms fluctuating settling velocities of the

particle.

� 2003 Published by Elsevier Ltd.
*
Corresponding author. Tel.: +1-217-244-4371; fax: +1-217-244-9090.

E-mail address: s-bala@uiuc.edu (S. Balachandar).
1 Current address: Sibley School of Mechanical and Aerospace Engineering, Upson Hall, Cornell University, Ithaca,

NY 14850, USA.

0301-9322/$ - see front matter � 2003 Published by Elsevier Ltd.

doi:10.1016/j.ijmultiphaseflow.2003.09.005

mail to: s-bala@uiuc.edu


1794 S.L. Rani, S. Balachandar / International Journal of Multiphase Flow 29 (2003) 1793–1816
1. Introduction

Particle-laden flows are encountered in a wide range of natural as well as industrial situations
such as pollutant dispersion in the atmosphere and oceans, dust deposition and removal in clean
rooms, electrostatic precipitators, etc. The phenomena of interest in these processes are particle
dispersion, preferential accumulation and mean settling of particles, etc.

Numerical simulations of particle-laden flows can be classified to be either Lagrangian or
Eulerian according to the manner in which the disperse phase is treated. In the Lagrangian ap-
proach, trajectories and velocities of individual particles are computed by integrating the particle
equations of motion. In the Eulerian approach, the particulate phase is also treated as a con-
tinuum much like the carrier phase. Conservation equations are developed for the mass and
momentum of the particle phase and are solved to evolve the particulate phase velocity and
concentration fields.

The Lagrangian and Eulerian approaches have their advantages as well as disadvantages. At
high concentrations, it will be computationally taxing to track all the particles within the com-
putational domain in the Lagrangian framework. Another difficulty with the Lagrangian ap-
proach is the lack of a rigorous way to incorporate the particle feedback to the fluid governing
equations. The Eulerian treatment of the particulate phase provides a convenient framework in
such scenarios. However, the Eulerian approach suffers from the disadvantage that additional set
of partial differential equations must be solved for the particulate velocity and concentration
fields. If particles of different sizes are simultaneously considered, the number of equations to be
solved increases. Furthermore, the assumption of an Eulerian field for the particulate phase ve-
locity is appropriate only for particles of sufficiently small size. However, the Eulerian momentum
equations for the particulate phase become increasingly stiff as the particle size decreases, thus
their solution is difficult to obtain for very small particles.

Recently, Ferry and Balachandar (2001), following earlier efforts by Maxey (1987) and Dru-
zhinin (1995), Druzhinin and Elghobashi (1998, 1999), have explored the equilibrium approxi-
mation to the Eulerian velocity field of the particulate phase. In this approach, the particle
velocity field, vðx; tÞ, is expressed explicitly in terms of the fluid velocity field, uðx; tÞ, as an ex-
pansion in particle response time. Thus, one avoids the need to solve additional momentum
equations for the particulate phase velocity. With the equilibrium approximation, the velocity
field corresponding to any number of particulate sizes can be easily obtained, provided their
nondimensional time scale is sufficiently small for the equilibrium approximation to be appro-
priate. The velocity fields can then be used to advance the concentration fields over time.

Starting from the general Lagrangian equation of motion for a particle that included added
mass, pressure gradient and Basset history forces, Ferry and Balachandar (2001) derived the first-
order equilibrium Eulerian approximation for the particle velocity field. The accuracy of the
equilibrium approximation was then tested in a turbulent channel flow by comparing the particle
velocity obtained from the equilibrium approximation with the exact Lagrangian particle velocity.
It was observed that for sufficiently small particles (with particle time scale in wall units, sþ < 1) the
equilibrium approximation provided a good approximation to the exact particle velocity and that
the error in the equilibrium approximation increased slowly with increasing particle time scale.

The objective of the present work is to extend the results presented in Ferry and Balachandar
(2001) and establish the applicability of the equilibrium Eulerian approximation in evolving the
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particle concentration field. It is of interest to investigate if there is any systematic accumulation of
error in approximating the particle velocity field with the equilibrium approach over long periods
of time, in terms of the time evolution of the particle concentration field. In particular, we will
evaluate the accuracy of the particle concentration field evolved over long periods of time with the
equilibrium Eulerian velocity field, by comparing it with the corresponding exact distribution of
particles evolved with the Lagrangian equations of motion. In addition to qualitative comparison
of the Eulerian concentration field against the Lagrangian particle distribution, we will also
present quantitative comparison of statistics on preferential concentration and gravitational
settling obtained from the two approaches.

Here we choose to perform this investigating in the context of an isotropic turbulent flow in a
cubic periodic box. Collisions with the wall and inter-particle collisions are two mechanisms that
disturb particles away from local equilibrium. Thus by investigating the behavior of a distribution
of particles at low concentration in isotropic turbulence attention is focused on examining the
effectiveness of equilibrium Eulerian approximation in the absence of such collisional effects.
Furthermore, unlike the turbulent channel flow, where particles continually tend to migrate to-
wards the walls (in the absence of mechanisms such as inter-particle collision), in the case of
isotropic turbulence, a statistically stationary state for the non-uniform concentration of particles
can be achieved. The statistically stationary state is well suited for a thorough comparison of the
equilibrium Eulerian approach with the traditional Lagrangian approach. This comparison will
be made for varying particle time scale and still-fluid gravitational settling velocity.
2. Description of the simulation

2.1. Background isotropic turbulence

The unladen, forced isotropic turbulence data is obtained through direct numerical simulation,
using a discrete Fourier series based pseudospectral method. The flow domain is a cubic box of
length L ¼ 2p discretized into N 3 (N ¼ 96) equispaced grid points, with periodic boundary con-
ditions applied in all three directions. A Taylor microscale Reynolds number, Rek ð¼ u0k=mÞ ¼
60:5, is obtained for the above grid resolution, where k and u0 are the Taylor microscale and the
fluctuating rms velocity respectively.

The fluid flow is advanced by solving the governing Navier–Stokes equations in the rotational
form and the continuity equation for an incompressible fluid:
ou

ot
þ x � u ¼ �$

p
qf

�
þ 1

2
u2
�
þ m$2uþ f; ð1Þ

$ 	 u ¼ 0; ð2Þ
where x ¼ $ � u is the vorticity, qf is the density, p the pressure, m the kinematic viscosity of the
fluid, and f is the external forcing applied to maintain a statistically stationary turbulence. The
fluid velocity, uðx; tÞ, is expressed in terms of its Fourier coefficients ûu as
uðx; tÞ ¼
X
k

ûuðk; tÞ expðik 	 xÞ ð3Þ
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and hence,
Table
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ûuðk; tÞ ¼ 1

N 3

X
x

uðx; tÞ expð�ik 	 xÞ; ð4Þ
where k and x represent the wavenumber and position vectors, respectively. The wavenumbers in
Fourier space are given as
ki ¼ 
ni
2p
L
; ð5Þ
where ni ¼ 0; 1; 2; . . . ;N=2 and i ¼ 1; 2; 3. The nonlinear term (the second term on the left-hand
side of Eq. (1)) is advanced in time using the second-order accurate Adams–Bashforth scheme,
while the linear viscous term is advanced using the second-order Crank–Nicholson method. In
applying the forcing, we follow the methodology developed by Eswaran and Pope (1988a,b),
where energy is added to only the largest modes in the range 0 < jkj6

ffiffiffi
8

p
. In order to maintain a

zero mean flow, the velocity Fourier coefficients corresponding to k ¼ ð0; 0; 0Þ are set to zero at
every timestep. The unladen fluid flow field was advanced for approximately 126Te before the
particulate field was introduced, where Te is the large-eddy turnover time. This time was sufficient
to go past the initial transients well into the statistically stationary state for the isotropic turbu-
lence. The timestep Dt used in the current simulations is 0:0132sk, where sk is the Kolmogorov
timescale. The various flow parameters are listed in Table 1.

2.2. Lagrangian approach for particles

In the Lagrangian approach, the particle velocities, v, and positions, xp, are obtained by solving
the following equations of motion:
dv

dt
¼ 1

sp
½uðxp; tÞ � vþ Vs
; ð6Þ

dxp

dt
¼ v; ð7Þ
1

parameters

S fluctuating velocity, hu02i1=2 18.818

rgy dissipation rate, h�i 3699.126

y turnover time, hTei 0.095

lor microscale, hki 0.4462

lmogorov length scale, hgi 0.02914

lmogorov velocity scale, hvki 4.759

lmogorov time scale, hski 0.006123

roscale Reynolds number, Rek 60.55

estep, Dt 0.00015

venumber resolution factor, kmaxg 1.36

id viscosity, m 0.1387

rties in code units.
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where the particle settling velocity in still fluid or the terminal velocity, Vs, and the particle time
scale, sp, are given by
Vs ¼ gsp and sp ¼
qpd

2
p

qf18m
: ð8Þ
In the above equations, g is the gravity vector, dp is the particle diameter and qp is the particle
density. Thus, the particle motion is taken to be in response to only the drag and gravitational
forces, where again the drag force is taken to be given by the Stokes drag appropriate for small
particle Reynolds numbers. In the present simulations we limit attention to only small heavier-
than-fluid particles at low Reynolds numbers and hence the neglect of added-mass and Bassett
history forces can be reasoned. Eqs. (6) and (7) are solved with the fourth-order Adams–Bash-
forth and Adams–Moulton schemes respectively. The fluid velocity at the particle location,
uðxp; tÞ, is computed using an optimal compact interpolation scheme.
2.3. Equilibrium Eulerian approach for the particles

In the equilibrium Eulerian approach, the particle velocity field, vðx; tÞ, is expressed as an ex-
pansion in terms of the fluid velocity field, given by Ferry and Balachandar (2001, 2002):
v � veq ¼ uþ Vs �
Du

Dt

�
þ Vs 	 $u

�
sp þOðs2pÞ: ð9Þ
In dimensionless terms, sp=sf , the ratio of particle time scale to the characteristic time scale of the
surrounding turbulent flow is the small parameter of the expansion (sf is the characteristic time
scale of the turbulent flow, which can be chosen to be the Kolmogorov time scale). Provided the
dimensionless time scale of the particle is sufficiently small, the above expansion converges rapidly
and it has been shown in turbulent channel flow (Ferry and Balachandar, 2001, 2002) that even
the first order (OðspÞ) representation for particle velocity, as shown above in Eq. (9), provides a
very good approximation to the actual Lagrangian particle velocity.

In the limit of sp ! 0, the settling velocity of the particles vanishes (i.e., Vs ! 0) and the
particle velocity reduces to the local fluid velocity (v ! u). At small but finite sp, the particle
velocity differs from the above limit due to two simple mechanisms. First, particles of finite inertia
will not respond to local fluid acceleration (Du=Dt) the same way as fluid elements, resulting in a
local slip velocity for the particles. Second, density difference between the particle and the fluid
will result in relative settling of the particles. Furthermore, in the case of strong settling effect,
where the settling velocity Vs is of the order of the fluctuating fluid velocity, the gravitational
settling in conjunction with the fluid velocity gradient along the direction of settling introduces
additional slip between the particle and the surrounding flow, owing to the memory effect of the
finite inertia particles. In case of weaker gravitational effect (Vs � usp=sf ), however, the term
Vs 	 $u will be of lower order importance and can therefore be ignored to OðspÞ. Nevertheless, the
advantage of the above equilibrium Eulerian approximation is that it avoids the need to solve
additional Navier–Stokes-like momentum (partial differential) equations for the velocity field of
the particulate phase.
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This velocity field, veqðx; tÞ, is used to evolve the particle concentration field. The particle
concentration field, /ðx; tÞ, is obtained by solving the following advection equation:
o/
ot

þ $ 	 ðveq/Þ ¼ 0: ð10Þ
It is well known that as the particles preferentially accumulate in regions of high strain-rate and
avoid regions of high vorticity, large concentration gradients develop within the flow. Preferential
concentration is most effective for particles whose time scale matches with that of the flow and for
such particles the smallest spatial scale of concentration variation can be much smaller than the
corresponding smallest fluid scale (the Kolmogorov length scale). Gravitational settling somewhat
weakens the level of preferential concentration by decreasing the residence time of the particles
within a turbulent eddy, but does not completely eliminate the tendency for preferential con-
centration.

A diffusion term is typically added to Eq. (10) in order to control the sharp concentration
gradients and any numerical instability that may arise due to the inability to resolve such strong
concentration gradients using the grid primarily chosen for computing the turbulent flow field. In
the context of the present spectral simulations, recent references (Tadmor, 1989; Karamanos and
Karniadakis, 2000) suggest the use of spectrally vanishing viscosity approach. In this approach a
wavenumber dependent diffusion term of the form, �$ 	 ½Qjkj � $/
 is applied to the right-hand
side of Eq. (10). In the above, � is the magnitude of the numerical diffusivity, Qjkj is the wave-
number dependent diffusivity kernel and � denotes the convolution operation in physical space.
This additional term is a controlled diffusion term added to stabilize the numerical scheme and
avoid any spurious spatial oscillations that may arise due to the inability to resolve length scales
smaller than the grid resolution. However, unlike simple diffusional terms of the form, �$2/, the
spectral vanishing diffusivity can be tailored to be effective only for the high wavenumber modes
and to have little direct influence on the low wavenumber modes. As a consequence, in physical
space, regions of sharp gradients are somewhat smoothened to grid resolution without intro-
ducing Gibb�s oscillation (Canute et al., 1988; Gottlieb and Hesthaven, 2001), and the influence
on the large scale variations in minimized.

As for the fluid momentum equation, the convective and diffusive terms are treated using the
Adams–Bashforth (explicit) and Crank–Nicholson (implicit) schemes respectively. In Fourier
space, the diffusion term is expressed as
�$ 	 ½Qjkj � $/
 ¼ ��
X
k

k2 bQQkðtÞ/̂/ðk; tÞ expðik 	 xÞ; ð11Þ
where k ¼ jkj is the wavenumber magnitude and the hat (̂ ) represents the Fourier coefficient. The
viscosity kernel bQQk is computed as follows:
bQQk ¼ exp
k2 � N 2=4

k2 �M2

� �
; 0 < M2 < k2 6N 2=4; ð12Þ

bQQk ¼ 0; 06 k2 6M2; ð13Þ

b 2 2
QQk ¼ 1; k > N =4; ð14Þ
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where M is the cutoff wavenumber magnitude below which the diffusive term has no effect. In the
present computations, M ¼ 6 is chosen, based on the recommendation in Tadmor (1989) and
Karamanos and Karniadakis (2000). However, note that the kernel becomes Oð1Þ only for large k.
For example, in the present problem the kernel is less than 4% for all k6N=4. In the absence of
numerical diffusion, there is a constant build up of ‘‘energy’’ at the high wavenumbers in the
power spectrum of the particle concentration, primarily due to the aliasing error. The introduc-
tion of the spectral vanishing viscosity will prevent the unphysical accumulation of energy at the
highest resolved wavenumbers and can be thought of as a strategy for dealiasing. The viscosity
coefficient, �, is chosen such that it is sufficiently large to damp spurious high wavenumber os-
cillations, yet small enough not to significantly affect the concentration field at the large and
intermediate scales of importance. Based on Karamanos and Karniadakis (2000), � is computed as
follows:
� ¼ c
N
; ð15Þ
where c is a constant and N (¼ 96) is the number of grid points in any one direction. Diagnostic
tests were performed to choose a suitable value for c. Values varying over four orders of mag-
nitude ranging from 0.1 to 1000 were considered. It was observed that c < 50 could lead to os-
cillations in the values of particle concentration. Hence, a value of c ¼ 75 was chosen. Further
discussion regarding the effects of � on the Eulerian statistics is provided in the results section. As
pointed out in Tadmor (1989) and Karamanos and Karniadakis (2000), the above approach
provides an essentially non-oscillatory behavior for the solution and also maintains the spectral
accuracy.
3. Results

3.1. Equilibrium Eulerian particle velocity

First, we will address the accuracy of the equilibrium expansion given in Eq. (9) in approxi-
mating the exact instantaneous velocity of the particle, in the context of isotropic turbulence.
Here, the exact particle velocity is defined to be that obtained from Lagrangian tracking using
Eqs. (6) and (7) and the error in the first-order equilibrium approximation, E1 is then defined as
E1 ¼
1

Np

XNp

i¼1

ðvi

"
� veq;iÞ2

#1=2

and E0 ¼
1

Np

XNp

i¼1

ðvi

"
� uðxpiÞÞ2

#1=2

; ð16Þ
where the sum is over all the Np particles inside the isotropic box of turbulence, with the position
vector of the ith particle given by xpi, vi is the exact velocity of the ith particle and veq;i represents
the velocity of ith particle evolved using the equilibrium Eulerian velocity field. The error in the
first-order approximation can also be compared with that of the zeroth order approximation, E0,
where the particle velocity is approximated simply as the local fluid velocity interpolated to
the particle position. Fig. 1 shows the above root mean square errors plotted as a function
of nondimensional particle time scale. All the quantities are made dimensionless by the fluid



Fig. 1. Comparison of rms zeroth and first order errors for dense particles.
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Kolmogorov length, velocity and time scales. It is clear that for small particles of sp < 1, the first-
order equilibrium expansion provides a better approximation to the actual particle velocity and
with decreasing particle size, the error decreases more rapidly when the OðspÞ correction is applied
to the equilibrium particle velocity, as given in Eq. (9).

In the work by Ferry and Balachandar (2001), it was pointed out in the context of a turbulent
channel flow that the equilibrium approximation accurately captures important physics such as
preferential accumulation and turbophoretic migration for sufficiently small particles. Here, we
observe similar behavior in the context of isotropic turbulence as well. Only sample result for the
statistics of (jSj2 � jXj2) is presented here. It has been well established by Maxey (1987) that
(jSj2 � jXj2) provides a simple quantitative measure of preferential accumulation, as can be shown
from Eq. (9) that
$ 	 v ¼ �sp
oui
oxj

ouj
oxi

¼ �spðjSj2 � jXj2Þ; ð17Þ
where S and X are the symmetric (strain-rate) and antisymmetric (rotation-rate) parts of the fluid
velocity gradient. Here, we evolve two sets of Lagrangian particles. The first set is the exact set of
particles evolved using the equations of motion (Eqs. (6) and (7)), while the second approximate
set of Lagrangian particles is evolved over time using Eq. (7) with the instantaneous particle
velocity given by the local equilibrium Eulerian velocity field interpolated to the particle location.
The degree of preferential concentration captured by the two sets of particles is measured in terms

of the mean value, hjSj2 � jXj2ip, where the angle brackets indicate an average over all the particle
locations (see Eq. (18) for the definition) and the overbar indicates a time-average. Fig. 2 presents

hjSj2 � jXj2ip averaged over both the exact and approximate particles for varying sp. For com-
parison, it should be pointed out that (jSj2 � jXj2) averaged over the entire fluid volume is zero. In
other words, if an initial uniform distribution of particles were to be evolved with the simple

approximation v � u, then there will be no preferential concentration and hjSj2 � jXj2ip ¼ 0.

Thus, the positive value for hjSj2 � jXj2ip indicates that particles of finite inertia prefer regions



Fig. 2. Variation of hjSj2 � jXj2ip with sp for particles. Lagrangian (––); equilibrium Eulerian (- - -).
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where strain-rate is in excess of rotation-rate. This preferential concentration is well captured by
the equilibrium approximation for particles of sp < 0:2. For larger particles the departure from
the exact behavior increases, with the equilibrium approximation tending to overpredict the de-
gree of preferential accumulation.

Fig. 3 presents the probability density function (PDF) of (jSj2 � jXj2) obtained from both the
exact and approximate sets of particles. Also plotted for comparison is the corresponding PDF for
the fluid. The results are shown for the case of sp ¼ 0:64 particles, for which in Fig. 2 the equi-
librium approximation was observed to be different from the exact statistics. Fig. 3 shows that the
PDF of the inertial particles is significantly different from that of the fluid. Compared to this
difference, the difference in the PDFs of the exact and approximate particles is much smaller. Thus
Fig. 3. Comparison of PDFs of jSj2 � jXj2 for sp ¼ 0:64 particles. Lagrangian (––); equilibrium Eulerian (- - -); fluid

(– Æ – Æ –).
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it appears that even for larger particles of sp � 1 the equilibrium approach continues to offer
better approximation to particle velocity than v � u.

3.2. Equilibrium Eulerian concentration

In this section, we will go beyond the Lagrangian tracking of particles with the equilibrium
approximation and evolve a particle concentration field with the equilibrium Eulerian particle
velocity field. By comparing the Eulerian concentration field with the exact Lagrangian distri-
bution of particles, we will assess the feasibility and accuracy of the equilibrium Eulerian ap-
proach for long-time evolution of particle concentration field. In the current work, 12 cases
involving variation of dimensionless particle response time, sp, and the dimensionless still-fluid
settling (or terminal) velocity, Vs, are considered. Four values of response time, sp ¼ 0:05, 0.1, 0.2,
0.4, and three values of settling velocity, jVsj ¼ 0:5; 2; 4 are chosen. The number of Lagrangian
particles considered is 483, which are initially located at the positions of alternate grid points. The
initial velocities of the Lagrangian particles are equal to the equilibrium Eulerian velocities in-
terpolated to their locations. The influence of initial location and velocity of the particles are
forgotten quickly over a few dimensionless time scales of the particle. Along with the Lagrangian
particles, the Eulerian concentration field is also evolved using the equilibrium Eulerian velocity
for all the 12 cases independently. The initial concentration field is taken to be uniform and in all
cases considered, the concentration field quickly reaches a statistically stationary state. The
smaller particles corresponding to sp ¼ 0:05 are evolved for 4000 response times, whereas the
largest ones (sp ¼ 0:4) are evolved for 500 response times. These evolution times are sufficient for
both the Eulerian and Lagrangian statistics to reach a statistically stationary state.

The primary purpose of the present paper is to evaluate the fidelity of the Eulerian approach for
the particle concentration field, evolved with the equilibrium Eulerian particle velocity field, by
comparing it with the corresponding Lagrangian distribution of particles, which serves as the
benchmark. Fig. 4 presents a comparison between the Lagrangian and the equilibrium Eulerian
results for the case of sp ¼ 0:1 and Vs ¼ 4. Frame (b) shows the contours of Eulerian particle
concentration field on a vertical plane passing through the cubic box of isotropic turbulence at
one instant in time and frame (c) shows the corresponding Lagrangian distribution of particles on
a thin slice of volume surrounding this plane. A satisfactory qualitative agreement between the
two frames can be observed, with both showing a non-uniform concentration of particles with
preferential accumulation in selected regions of the flow and certain other locations void of any
particles. In Fig. 4, frame (a) shows contours of (jSj2 � jXj2) on the same vertical plane as in frame
(b). The comparison between the Eulerian particle concentration field and the contours of
(jSj2 � jXj2) is quite striking. It is clear particles accumulate in regions where strain-rate domi-
nates over local vorticity and avoid local regions where the rotation-rate is much in excess of the
local strain-rate.

In spite of the qualitative agreement between the three frames shown in Fig. 4, a quantitative
comparison of the Eulerian concentration field with the Lagrangian distribution of particles can
be challenging. For example, it is not straight forward to obtain a statistically accurate concen-
tration field from the Lagrangian distribution of particles for comparison with the corresponding
Eulerian result. Here, we propose to compute the statistics of different fluid and particle quantities
as seen by both the distribution of Lagrangian particles and by the Eulerian particle concentration



Fig. 4. Contours of (a) jSj2 � jXj2, (b) /ðx; tÞ and (c) particle position scatter, for sp ¼ 0:1 and Vs ¼ 4.
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field and compare them to assess the accuracy of the equilibrium Eulerian approach. All statistics
to be presented below are for quantities that have been non-dimensionalized by the corresponding
Kolmogorov scale.

The particle-average of a quantity f seen by the distribution of Lagrangian particles can be
defined as follows:
Lagrangian : hf ipðtÞ ¼
1

Np

XNp

i¼1

fiðxpi; tÞ ð18Þ
and the corresponding particle-average seen by the Eulerian particle concentration can be
evaluated as:
Eulerian : hf ipðtÞ ¼
PNx

i¼1

PNy

j¼1

PNz
k¼1 /ðxi; yj; zk; tÞf ðxi; yj; zk; tÞPNx

i¼1

PNy

j¼1

PNz
k¼1 /ðxi; yj; zk; tÞ

: ð19Þ
In the above equations, NxNyNz is the total number of grid points (963 in this case) and xi, yj, zk
represent the grid point coordinates in the physical space. As can be observed, the Eulerian
statistics are weighted by the local particle concentration.

We also define a simple spatial average taken over the entire box of isotropic turbulence, de-
noted by h	i. The volume-averaged mean Eulerian concentration of particles, h/i, remains time-
invariant and the spectral vanishing viscosity has no effect on the mean conservation of mass. The



Fig. 5. Normalized rms particle concentration, /rms, for jVsj ¼ 2. Time t is normalized with the Kolmogorov timescale.
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time history of the root mean square fluctuation in particle concentration for the four different
particles of sp ¼ 0:05, 0.1, 0.2 and 0.4 at the intermediate settling velocity jVsj ¼ 2 is shown in Fig.
5. The figure shows the normalized rms concentration fluctuation, /rms, defined as
Table

Comp

jVsj

0.5

2.0

4.0
/rms ¼
hð/ � h/iÞ2i1=2

h/i : ð20Þ
After a short period of initial transience, where /rms rapidly increases from its initial value of zero,
it reaches a statistically steady state in all the cases considered. Time-averaged value of /rms,
averaged only over the period of statistical stationarity, is presented in Table 2 for all the cases
2

arison of the computed skewness with the log-normal values for various sp and jVsj
sp /rms, current Skewness, S/

Current Log-normal

0.05 0.2222 )1.4035 0.6784

0.10 0.3886 )0.6985 1.2258

0.20 0.6422 0.0724 2.1933

0.40 1.0215 0.9909 4.1343

0.05 0.1943 )1.3560 0.5910

0.10 0.3464 )0.6515 1.0817

0.20 0.5922 0.1464 1.9886

0.40 0.9927 1.1425 3.9601

0.05 0.1594 )1.1809 0.4829

0.10 0.2934 )0.5358 0.9064

0.20 0.5259 0.2420 1.7253

0.40 0.9359 1.2952 3.6326
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considered. Here the overbar represents a time-average. The level of fluctuation in particle con-
centration increases with particle response time, reaching as large as the mean for the largest
particle considered. With increasing settling velocity the residence time of particles within the
turbulent eddies decreases and as a result /rms decreases with increasing Vs. For the larger par-
ticles under consideration the decrease is only modest as jVsj increases from 0.5 to 4.0. Table 2
also presents the time-averaged skewness of particle concentration defined as
Fi
S/ ¼ hð/ � h/iÞ3i
hð/ � h/iÞ2i3=2

" #
ð21Þ
for the 12 different cases. Log-normal distribution is an appropriate reference to compare the
actual distribution of concentration. The skewness factor for the log-normal distribution is de-
fined as
SLN ¼ /rms½ð/rmsÞ
2 þ 3
: ð22Þ
Thus, from Table 2, it appears that the distribution of particle concentration differs from log-
normal. Interestingly, the skewness is negative for small particle time scale, which arises mainly
because the positive fluctuations are somewhat contained than the negative fluctuations about the
mean, which is illustrated in Fig. 6, where the PDF of the deviation in particle concentration away
from the mean (/ � h/i) is plotted for the sp ¼ 0:05 particle. The peak concentration within the
box was observed to quickly reach a statistically stationary state. Although the precise value of
peak concentration fluctuates over time, for the all the three cases shown in Fig. 6, it varies be-
tween 150% and 190% of the mean concentration. With increasing particle time scale, the dis-
tribution of particle concentration widens and consequently the skewness becomes positive and
increases, but for all cases considered it remains smaller than that of log-normal distribution.

The effect of spectral vanishing diffusivity on the computed concentration field can be best il-
lustrated with the energy spectra of concentration. In Fig. 7, j/̂/j2 is plotted against jkj for five
g. 6. Fluctuating particle concentration PDFs for sp ¼ 0:05. jVsj ¼ 0:5 (––); jVsj ¼ 2 (- - -); jVsj ¼ 4 (– Æ – Æ –).



Fig. 7. Particle concentration power spectrum for various values of diffusivity coefficient and sp ¼ 0:1 and Vs ¼ 4.

� ¼ 1000=N (	 	 	); � ¼ 100=N (––); � ¼ 75=N (–ÆÆ – ÆÆ–); � ¼ 10=N (- - -); � ¼ 1=N(– Æ – Æ –).
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different values of � ¼ 1=N ; 10=N ; 75=N ; 100=N and 1000=N , covering three orders of magnitude.
Even though the velocity field is well resolved and shows several decades of energy decay, the
corresponding spectra of the concentration field for small values of � (i.e., without much spectral
vanishing diffusivity) do not show any spectral decay and exhibit spurious build up of energy at
the high wavenumbers. Without any diffusivity, sharp gradients are inevitable in the solution of
Eq. (10) and the inability to resolve such sharp gradients in concentration results in the spectral
build up at the highest wavenumbers. With the introduction of spectral vanishing viscosity of
reasonable magnitude, the high wavenumber part of the concentration spectra is dramatically
smoothened. This in physical space corresponds to a dramatic reduction in the high frequency
spatial oscillations that otherwise will appear in regions of strong concentration gradient due to
Gibb�s phenomenon (Canute et al., 1988). This behavior is consistent with the observations by
Tadmor (1989) and Karamanos and Karniadakis (2000). Such large oscillations in the present
context can result in local regions of negative concentration. The spectral vanishing viscosity
greatly reduces the magnitude and the extent of these negative concentrations. The influence of
spectral vanishing viscosity is relatively small for the low wavenumber range, but increases with
increasing �. The choice of � ¼ 75=N chosen here is a compromise, where the high wavenumber
spurious oscillations are damped and the effect on large scale concentration variation is mini-
mized.

Fig. 8 presents the temporal evolution of the following particle-averaged statistics: hjSj2 �
jXj2ip, hjSjip, hjXjip, and hjrujip, computed based on both the Lagrangian particle distribution
and the equilibrium Eulerian concentration field. Here, ru is the largest negative (most com-
pressional) eigenvalue of the strain-rate tensor, S. The results shown are for sp ¼ 0:1 and jVsj ¼ 4.
These particles are evolved for 2000 response times and as can be seen, after an initial period of

transience, the statistics attain a stationary state. From Eq. (17), it can be seen that (jSj2 � jXj2),
averaged over the entire box of turbulence, is constrained to be zero. For the fluid as a whole,
thus, mean square strain-rate is in exact balance with the mean square rotation-rate. Fig. 8(a)
shows that hjSj2 � jXj2ip averaged over the particles, however, becomes positive and in the



Fig. 8. Time variation of (a) hjSj2 � jXj2ip, (b) hjSjip and hjXjip (c) hjrujip, for sp ¼ 0:1 and jVsj ¼ 4. Lagrangian (––);

equilibrium Eulerian (- - -).
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statistically stationary state, fluctuates about a value of approximately 0.05. Thus the particles
tend to preferentially accumulate in regions where local strain-rate is in excess of local rotation-
rate. The sp ¼ 0:1 particles are sufficiently small that the time evolution of the statistics based on
equilibrium Eulerian particle concentration is in good agreement with that based on the ‘‘true’’
Lagrangian distribution of particles. The equilibrium Eulerian concentration slightly overpredicts
the degree of preferential accumulation, which is consistent with the result presented in Fig. 2. It
must however be remarked that these particles are not so small that they follow the fluid entirely.
This is reflected by the degree of preferential accumulation observed for these particles, which has
been captured by the equilibrium Eulerian approach as accurately as in the Lagrangian tracking
of particles.
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The good agreement between the equilibrium Eulerian and Lagrangian approaches can also be
seen in the time evolution of hjSjip and hjXjip. The strain-rate and rotation-rate magnitudes
averaged over the entire volume of fluid, (hjSji and hjXji), are respectively 0.6805 and 0.6289.
Note that although hjSj2i ¼ hjXj2i, since large values of rotation rate are more likely to occur than
strain-rate, we have the statistical result hjSji > hjXji. From Fig. 8(b), it can be seen that both the
strain-rate and rotation-rate averaged over the particles are less than the corresponding fluid
average. Particles are clearly expected to avoid regions of high rotation-rate, but they also seem
not to prefer regions of high strain-rate. This behavior that particle concentration tends to di-
minish in regions of very high strain-rate has previously been observed by Wang and Maxey
(1993) as well. They suggest that this may be due to the fact that the regions of high strain-rate
often surround the intense vortex tubes and thus particles may be spun out of these intense strain-
rate regions as well.

Also shown in Fig. 8 is the time history of hjrujip. The significance of this quantity is that in
Ferry and Balachandar (2001) it was shown that 1=jruj provides the appropriate time scale of the
fluid flow and that provided spjruj6 1 over the entire volume, an Eulerian representation for the
particle velocity is meaningful. If the above condition is satisfied, any deviation in the particle
velocity will decay exponentially fast and entrain to the unique Eulerian velocity, whereas for
spjruj much greater than 1, an Eulerian description for particle velocity is appropriate only in a
local average sense. It is clear from Fig. 8(c) that, on average, the assumption of spjruj6 1 is well
satisfied by the sp ¼ 0:1 particles. In fact, even for the largest particles of sp ¼ 0:4 under con-
sideration, the assumption of a unique Eulerian velocity field is appropriate. As in the case of
strain-rate and rotation-rate results, the Lagrangian and equilibrium Eulerian statistics compare
quite well.

It is now well established that particles falling through isotropic turbulence do not sample
the flow uniformly. Particles prefer to flow down regions of downwash than move down
through regions of upwash. As a result, the mean vertical fluid velocity seen by the particles is
non-zero and is pointed down, even though the mean fluid velocity of the box of isotropic
turbulence is zero. Thus, the settling velocity of particles in isotropic turbulence is higher than
its value in still fluid (Wang and Maxey, 1993). Fig. 9(a) and (b) shows the time history of the
mean vertical velocity of the fluid seen by the particles and that of the particles, hu1ip and
hv1ip, evaluated with both the Lagrangian and equilibrium Eulerian approaches for the case of
sp ¼ 0:1 and jVsj ¼ 4:0. It is clear that as in the Lagrangian approach, the equilibrium
Eulerian approximation also accurately captures the increase in settling velocity. For the case
of sp ¼ 0:1 and jVsj ¼ 4:0, the settling velocity on average increases by about 0.15, which is
precisely the mean local vertical fluid velocity seen by the particles. Shown in Fig. 9(c) and
(d) are the rms fluctuations in the vertical and horizontal components of particle velocity
defined as
v1;rms ¼ hðv1 � hv1iÞ2i1=2p and v2;rms ¼ hv22i
1=2
p : ð23Þ
The agreement between the Lagrangian and the equilibrium Eulerian statistics is quite good. It
can also be observed that the Eulerian approach compares better with the Lagrangian results with
respect to the low frequency oscillations than the high frequency ones.



Fig. 9. Time variation of (a) hu1ip, (b) hv1ip, (c) v1;rms, (d) v2;rms, for sp ¼ 0:1 and jVsj ¼ 4. Lagrangian (––); equilibrium

Eulerian (- - -).
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3.3. Effects of gravity and particle response time

In the previous section, we focused attention mainly on the particle-averaged statistics of only a
single particle class characterized by sp ¼ 0:1 and jVsj ¼ 4:0. The time-dependent behavior of all
other particle classes was qualitatively quite similar and in particular, a statistically stationary
state was obtained after an initial transience in all cases. The level of accuracy of the equilibrium
Eulerian approximation, however, depends on the particle response time and the gravitational
settling. Here we present statistics that are further averaged over time in the statistically stationary
regime. These time- and particle-averaged statistics are presented as a function of the particle
response time, sp, and the particle still-fluid settling velocity, jVsj.
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Fig. 10(a) shows the variation in hjSjip and hjXjip for the 12 cases, obtained from both the
Lagrangian and the equilibrium Eulerian approaches. First, it can be observed that with in-
creasing sp, hjSjip increases far more slowly than the steady and rapid decrease in hjXjip. This
suggests that the particles of increasing inertia tend to avoid regions of high vorticity far more
effectively than they tend to seek regions of high strain-rate. The rotation-rate statistic shows an
interesting behavior. For particles of smaller inertia, hjXjip obtained from the Lagrangian ap-
proach is lower than the corresponding Eulerian estimate. With increasing sp, a crossover takes
place and then the Eulerian estimate tends to be lower than the corresponding Lagrangian sta-
tistics.
Fig. 10. Variation of (a) hjSjip and hjXjip, (b) hjSj
2 � jXj2ip, (c) hjrujip, with Vs and sp. Lagrangian (––) and equilibrium

Eulerian (- - -) for Vs ¼ 0:5; Lagrangian (– Æ – Æ –) and equilibrium Eulerian (	 	 	) for Vs ¼ 2; Lagrangian (– ÆÆ –ÆÆ –) and
equilibrium Eulerian (- - -) for Vs ¼ 4.
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The above behavior is due to two competing mechanisms. First, as seen in Fig. 2, the OðspÞ
equilibrium Eulerian approximation for particle velocity given in Eq. (9) tends to overpredict the
preferential accumulation. This effect is negligible for particles of small inertia, but slowly in-
creases as sp increases. The second effect is due to the spectral vanishing viscosity employed in the
Eulerian approach, which tends to smoothen and somewhat broaden the sharp gradients. The net
effect of this diffusion is to counter the effect of preferential accumulation and increase the
Eulerian estimate of hjXjip. This effect is dependent on the degree of preferential accumulation
and therefore can be expected to peak when the time scale of the particle matches with that of the
turbulence. Furthermore, with increasing settling, preferential accumulation and particle con-
centration gradients weaken and correspondingly the diffusion effect weakens as well. In the limit
of small sp, the latter effect dominates and as a result, the Lagrangian particles tend to avoid
regions of rotation-rate more effectively than the Eulerian particle concentration, whereas as sp
increases, the former effect takes over and the equilibrium approximation underpredicts hjXjip.

The above two mechanisms influence the strain-rate statistics as well. However, as pointed
above, the degree of attraction towards the high strain-rate regions is not nearly as high as the
abhorrence towards the high rotation-rate regions and as a result the concentration gradient
associated with the high strain-rate regions is weaker than that in regions of strong rotation. In
effect, the diffusion effect is weaker in case of strain-rate statistics. Therefore, for all cases con-
sidered, the equilibrium Eulerian approach estimates a slightly hjSjip compared to the Lagrangian
statistics and the difference increases with increasing particle time scale. Nevertheless, in all the
cases considered here, the equilibrium Eulerian approach provides a reasonable approximation to
the actual Lagrangian tracking of particles.

The statistics on preferential concentration measured in terms of hjSj2 � jXj2ip for both the
Lagrangian and Eulerian approaches are shown in Fig. 10(b). Increasing tendency towards
preferential accumulation with increasing sp is evident. On the other hand, gravitational settling
tends to homogenize the distribution of particles. The difference between the equilibrium Eulerian
and the Lagrangian approaches generally increases with the particle response time. However,
for the case of jVsj ¼ 0:5, the effect of crossover seen earlier in the rotation-rate statistics can
be observed. The variation in hjrujip is shown in Fig. 10(c). In all the cases considered, the
equilibrium Eulerian approximation predicts a somewhat larger value than the Lagrangian esti-
mate. The difference is negligible for particles of small time scale, but it increases with increas-
ing sp.

The PDF of jSj measured at the particle locations obtained from both the Lagrangian and
equilibrium Eulerian approaches are shown in Fig. 11. The results for two different types of
particles are shown: (1) sp ¼ 0:1, jVsj ¼ 4:0, whose time evolution was shown in Fig. 8(b); and (2)
sp ¼ 0:4, jVsj ¼ 0:5, which shows the worst case difference between the Eulerian and Lagrangian
approaches. The entire cubic box of data over a period of time after statistical stationarity has
been achieved is used to compute these PDFs. Also shown are the corresponding fluid PDFs
computed for the entire fluid volume. Owing to preferential accumulation, the particle PDFs are
different from the corresponding fluid PDF and the difference increases with increasing sp.
Compared to this difference, the discrepancy between the Lagrangian and equilibrium Eulerian
PDFs is not as large, even for the worst case. For the case of sp ¼ 0:1 and jVsj ¼ 4:0, the La-
grangian and the equilibrium Eulerian PDFs virtually overlap. The corresponding PDFs of jXj
are shown in Fig. 12(a) and (b) and the conclusions are the same, i.e. even for the case of sp ¼ 0:4,



Fig. 11. Temporally and spatially averaged PDFs of jSj for (a) sp ¼ 0:1 and jVsj ¼ 4, (b) sp ¼ 0:4 and jVsj ¼ 0:5.
Lagrangian (––); equilibrium Eulerian (- - -); fluid (– Æ – Æ –).

Fig. 12. Temporally and spatially averaged PDFs of jXj for (a) sp ¼ 0:1 and jVsj ¼ 4, (b) sp ¼ 0:4 and jVsj ¼ 0:5.
Lagrangian (––); equilibrium Eulerian (- - -); fluid (– Æ – Æ –).
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jVsj ¼ 0:5, the equilibrium Eulerian approach provides a good approximation to the Lagrangian
tracking of particles.

The time-averaged mean vertical velocity of the particle, hv1ip is shown in Fig. 13(a) for the
different cases considered. The corresponding time and particle-averaged mean vertical velocity of
the fluid seen by the particles, hu1ip (not shown here), is simply smaller by the settling velocity jVsj.
It is clear from Fig. 13(a) that the equilibrium Eulerian approximation provides a good ap-
proximation to the settling velocity of the actual Lagrangian particles.



Fig. 13. Variation of (a) hv1ip (b) v1;rms, (c) v2;rms, with Vs and sp. Lagrangian (––) and equilibrium Eulerian (- - -) for

Vs ¼ 0:5; Lagrangian (– Æ – Æ –) and equilibrium Eulerian (	 	 	) for Vs ¼ 2; Lagrangian (– ÆÆ – ÆÆ –) and equilibrium Eulerian

(- - -) for Vs ¼ 4; still-fluid settling velocity (square).
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As shown by Wang and Maxey (1993), over the range considered, the settling velocity increases
with sp. The influence of turbulence will decrease for particles of much larger sp. However, for
such large particles, the equilibrium Eulerian expansion will cease to provide a good approxi-
mation. Fig. 13(b) and (c) shows the dependence of time-averaged rms vertical and horizontal
velocity fluctuations of the particles on particle time scale and settling velocity. Note that the
range of the vertical scale in these plots is quite narrow and therefore, the difference between the
equilibrium Eulerian and the Lagrangian is small for all cases considered. Even for the worst case
of sp ¼ 0:4 and jVsj ¼ 0:5, the difference in rms vertical velocity fluctuation is less than 4% and for
the smallest particle the difference is about 0.1% or less.

The PDFs of v1 obtained from both the Lagrangian and Eulerian approaches are shown in Fig.
14 for the two cases sp ¼ 0:1, jVsj ¼ 4:0 and sp ¼ 0:4, jVsj ¼ 0:5. The PDFs cover a wide range of



Fig. 14. Temporally and spatially averaged PDFs of v1, for sp ¼ 0:1, Vs ¼ 4: Lagrangian (– – –); equilibrium Eulerian

(square) and sp ¼ 0:4, Vs ¼ 0:5: Lagrangian (––); equilibrium Eulerian (circle).
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vertical velocity taken by the settling particles and over this entire range, the Lagrangian and
Eulerian PDFs virtually lie on one another. This is consistent with the good agreement between
the equilibrium Eulerian and Lagrangian results of the mean and rms seen in Fig. 13(a) and (b).
The good agreement between the PDFs in fact shows that it is not only the mean and the rms, but
the entire distribution of the Lagrangian particle velocities is well reproduced by the equilibrium
Eulerian approach, for all the cases considered.
4. Conclusions

The current work successfully demonstrates the application of the equilibrium Eulerian ap-
proach (Ferry and Balachandar, 2001) to the evolution of Eulerian particle concentration field
over long periods of time. The Eulerian particle velocity field computed by the equilibrium
Eulerian approach is used to evolve the particle concentration field, /ðx; tÞ. Thus, the need to
solve three additional pdes for the Eulerian particle velocity field is obviated in the current ap-
proach and only the particle concentration equation needs to be solved. Here, it is observed that
the inclusion of a spectral vanishing viscosity term is necessary to keep the solution bounded. This
was done in a manner so as to preserve the spectral accuracy.

The Eulerian concentration field is then used as the weighting factor in calculating the particle-
averaged Eulerian statistics. These are compared against the corresponding Lagrangian statistics
obtained by tracking a large distribution of particles over long periods of time. In the current
work, 12 different types of particles, involving four different dimensionless particle response time,
sp, and three different dimensionless still-fluid settling (or terminal) velocity, Vs, are considered. In
all the cases considered, the time history of both the Lagrangian and the equilibrium Eulerian
particle-averaged statistics showed good agreement. In particular, both these statistics showed
rapid initial transience and an eventual statistically stationary state. Temporal averaging is then
carried out in the statistically stationary state.
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The time- and particle-averaged statistics of preferential concentration showed good agreement
between the equilibrium Eulerian and the exact Lagrangian approaches. The difference between
the two increased with increasing particle time scale, with the equilibrium Eulerian approximation
tending to somewhat overpredict the degree of preferential accumulation of particles. The sta-
tistics on particle settling such as, mean settling velocity, rms vertical and horizontal particle
velocity fluctuations and particle velocity (PDF), computed with both the equilibrium Eulerian
and Lagrangian approaches, show good agreement.

In the context of the present spectral simulations, the introduction of the spectral vanishing
diffusivity is crucial in obtaining meaningful concentration fields. The added diffusivity is targeted
towards the high wavenumbers and by smoothening the sharp concentration gradients, it avoids
local high wavenumber oscillations arising from Gibb�s phenomenon (Canute et al., 1988). Al-
though the influence on low wavenumber spectral behavior cannot be completely avoided, the
value of spectral vanishing viscosity can be chosen to minimize the influence on large scale
concentration variation. The present results are equally applicable in the context of finite differ-
ence and finite volume treatment of the particulate phase. Here again, with the use of equilibrium
Eulerian approximation for the particle velocity, only the concentration field needs to be solved.
In the finite difference and finite volume framework, a large body of literature on total variation
diminishing (TVD) and essentially non-oscillatory (ENO) schemes is available, which can be ef-
ficiently employed for the evolution of the concentration field.
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